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Steady axisymmetric creeping plumes above a
planar boundary. Part 2. A distributed source

By ROBERT J. WHITTAKER AND JOHN R. LISTER
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Asymptotic solutions are obtained for an axisymmetric plume rising from a localized
heat source at the base of a half-space filled with very viscous fluid. Specifically,
we consider sources comprising a heated disk with either rigid (no-slip) or free-slip
(no tangential stress) conditions on the lower boundary. The boundary layer which
forms above the source is solved using stretched coordinates, and then matched to a
slender plume which rises above it. At large Rayleigh numbers, the Nusselt number
is given by Nu ∼ 4.06Ra1/3(lnRa)−1/3 (free-slip boundary) and Nu ∼ 2.90Ra1/5 (rigid
boundary), where the Rayleigh number is based on the radius of the source. Both
these expressions have corrections arising from a slender-body expansion in powers
of (ln Ra)−1.

1. Introduction
In Part 1 of this work (Whittaker & Lister 2006), we derived an asymptotic solution

for a slender plume in Stokes flow above a horizontal boundary due to a point source
of given buoyancy flux B . This was found to depend only on B , the properties
of the fluid, and the boundary condition on the velocity at the boundary. Actual
realizations of this flow will involve a buoyancy source of finite size. If the source is
fixed temperature, rather than fixed flux, then B will also need to be determined by a
solution in the neighbourhood of the source. In this paper, we address the question
of how to do this when the source is not point-like.

For a source of typical linear dimension R, held at constant temperature T0 + �T ,
with a far-field temperature T0, we define the Rayleigh and Nusselt numbers by

Ra =
gβ�T R3

νκ
, Nu =

B

gβ�T κR
, (1.1)

where g is the acceleration due to gravity, and β , κ and ν are, respectively, the
coefficients of thermal expansion, thermal diffusivity and kinematic viscosity of the
fluid. Then Ra and Nu are the usual dimensionless measures of the thermal forcing
and the resulting heat flux. We note that the length scale z0 = 4κ(2πν/B)1/2 introduced
in Part 1, can be expressed as

z0/R = C (RaNu)−1/2, (1.2)

where C = (32π)1/2.
If Ra � 1, then the solution to the heat equation on the length scale R of the source

is dominated by diffusion. Then Nu = O(1) and z0 � R. The effects of advection
become comparable to those of diffusion on the length scale z0. This is the scale on
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Figure 1. (a) An overview of the different regions of the flow, showing the horizontal boundary
layer I, the turn-round region II, the vertical plume III, and the outer flow IV. The scale h0

of the turn-round region is much smaller than the radius R of the disk, and matches the
boundary-layer thickness H for s � z to the plume radius a for z � R. (b) A close-up of the
horizontal boundary layer, with horizontal coordinate x = R − s centred on the outer edge.

which the local Rayleigh number is O(1), and also where the plume radius a becomes
comparable to the rise height z. The point-source solution derived in Part 1 is valid
for z � z0 (equivalently a � z). In this situation, B is determined by diffusion on the
length scale R and the source appears point-like on the much larger scale z0 of the
plume base (cf. flow past a heated body at low Péclet number; Leal 1992, pp. 456 ff).

If Ra � 1 then we expect the solution close to the source (on the length scale
R) to involve boundary layers in which both advection and diffusion are important.
Motivated by experimental realizations (for example, Kaminski & Jaupart 2003;
Kerr & Mériaux 2004), we consider the specific case of a source that is a heated
disk of radius R set into the horizontal lower boundary. We look for a solution that
takes the form shown in figure 1: radially inward flow in a boundary layer above
the source (region I) feeds a central plume (region III) through a small turn-round
region (region II). We find that B is determined by the competition between vertical
diffusion and horizontal advection in the boundary layer. Diffusion is negligible in
the turn-round region owing to the dominance of advection over the short time
scale required to pass through the region. In the plume, there is a balance between
advection and horizontal diffusion, allowing it to broaden slowly, but only over a
height scale much greater than R.

This structure resembles part of the convection cell analysed by Umemura & Busse
(1989), though we note that in their problem the boundary-layer velocity is dominated
by the flow induced by the annular down-welling around the perimeter of the cell.
In the present problem there is no down-welling and the flow in the boundary layer
is due partly to entrainment by the rising plume, and partly to the direct action of
buoyancy on the sloping isopycnals in the boundary layer. We will show that above
a free-slip boundary the flow in the boundary layer is dominated by that generated
by the rising plume, whereas above a rigid boundary the flow is dominated by that
due to the local buoyancy forces. In both cases, we must solve an advection–diffusion
problem for the temperature field in the boundary layer in order to compute the
buoyancy flux released from the source. In particular, we are interested in finding
the asymptotic relationship between the Nusselt number and the Rayleigh number as
Ra → ∞.
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This problem is essentially the axisymmetric version of a two-dimensional planar
problem studied by Roberts (1977). However, as in Part 1, the change from planar to
axisymmetric geometry introduces logarithmic behaviour in the inner–outer flow
matching, which both changes and complicates the solution. This is discussed
further in § 5.3. Olson, Schubert & Anderson (1993) provided an idealized model
for the axisymmetric free-slip case that we consider here. Our analysis avoids their
approximations and we obtain a more accurate solution. The simplifying assumptions
made by Olson et al. (1993) can be seen from our analysis to be reasonable, though not
strictly true. As a result, their approximate scaling Nu ∝ Ra1/3 compares favourably
with the correct leading-order result Nu ∼ 4.06 Ra1/3(ln Ra)−1/3 that we derive for the
free-slip problem.† We also derive the scaling Nu ∼ 2.90 Ra1/5 for the case of a rigid
boundary. The lack of a logarithmic factor in the rigid case is a reflection of the fact
that the boundary-layer flow is not influenced by the plume at leading order.

1.1. Notation and governing equations

As in Part 1, the governing equations we consider are the Boussinesq Stokes equations
for incompressible flow, and the steady advection–diffusion equation for heat. We write

ν∇2u = ∇p − bêz, (1.3)

∇ · u = 0, (1.4)

(u · ∇) b = κ∇2b, (1.5)

where b = gβ(T − T0) denotes the buoyancy distribution, p is a modified pressure
and the remaining notation is standard.

The boundary conditions are a quiescent far field with b → 0, a velocity condition
(either rigid or free-slip) on the lower boundary z = 0, and appropriate thermal
conditions on z = 0: b = gβ�T for s < R, and bz = 0 for s > R. We generally use
cylindrical polar coordinates (s, φ, z), as shown in figure 1, and we consider only the
axisymmetric case, in which all variables are independent of φ.

2. Structure of the plume
2.1. Plume width and mass flux

The turn-round region (region II of figure 1a) is defined by the region in which
horizontal and vertical derivatives have the same order of magnitude, in other words
where the slope of the streamlines is roughly O(1). Once the heated fluid has risen
out of the turn-round region, the plume width a(z) satisfies a � z and the plume is
slender. As in Part 1, vertical diffusion can be neglected, with O(a2/z2) corrections,
and the buoyancy flux

B = 2π

∫ ∞

0

wb s ds, (2.1)

is constant. Moreover, slenderness implies that the vertical velocity is uniform across
the plume at leading order with O([ln(z/a)]−1) corrections. The Stokes stream-function
therefore takes the form ψ ∼ s2w0(z)/2 at leading order. The horizontally integrated
buoyancy force is given by

F (z) = 2π

∫ ∞

0

bs ds ∼ B

w0(z)
. (2.2)

† After seeing a conference presentation of our work Professor S. Morris kindly sent us an
unpublished manuscript from 1987, in which he also derived this leading-order result.
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We use a ratio of two moments of the buoyancy distribution b(s, z) to define a
representative (thermal) width of the plume as

a2 =

∫ ∞

0

b s3 ds

∫ ∞

0

b s ds

. (2.3)

With this definition, the width of a Gaussian distribution b ∝ exp[−(s/a)2] (see
Part 1) is precisely a. We then define a representative mass flux in the plume by

Q(z) =

2

∫ ∞

0

b ψ dψ

∫ ∞

0

b dψ

, (2.4)

where the factor of 2 is introduced so that Q(z) = a2w0 in uniform flow. We define Q

in terms of ψ as this definition may also be applied to non-uniform flow. In particular,
it will be used later for matching the flow in the boundary layer to the base of the
plume.

Since Q depends on the width of the buoyancy distribution, it increases along the
flow owing to the diffusion of heat across streamlines. This effect is now quantified.
Using ψ as the horizontal coordinate and neglecting vertical diffusion, the heat
equation (1.5) may be rewritten as(

∂b

∂z

)
ψ

= 2κ
∂

∂ψ

(
ψ

∂b

∂ψ

)
. (2.5)

It follows from (2.5) that

d

dz

∫ ∞

0

b dψ = 0, (2.6)

reflecting the constancy of B , and that

d

dz

∫ ∞

0

bψ dψ = [2κψ2bψ ]∞
0 − 2κ

∫ ∞

0

bψψ dψ = 2κ

∫ ∞

0

b dψ. (2.7)

Hence dQ/dz = 4κ , and so

Q(z) = 4κ(z + z∗) (2.8)

for some constant z∗, which can be interpreted as the depth (below the plane) of
a virtual origin for the plume. (A point-source plume has z∗ = 0.) In the present
problem, z∗ is set by the mass flux entering from the turn-round region at the base of
the plume. For z � z∗, we observe that Q(z) ∼ 4κz∗, so there is little diffusion across
the streamlines and the plume is advection dominated in this region.

After solving the appropriate boundary-layer problem, Q and B will be matched
through the turn-round region, which is sufficient to determine both the leading-order
behaviour of the plume and the leading-order flow that it induces in the outer fluid.
Complete matching of b(ψ) is discussed further in the Appendix.

2.2. Slender-body theory for the vertical velocity

Since a � z, slender-body theory (Cox 1970; Leal 1992, pp. 247–251) may be used
to show that the leading-order vertical flow for s � z induced by the buoyancy force



Axisymmetric creeping plumes. Part 2 383

F (z) is given by

w(s, z) =
F (z)

2πν

[
ln

(
z

s

)
+ O(1)

]
, (2.9)

for both rigid and free-slip boundary conditions, as in Part 1. By matching this to the
rise velocity w0(z) of the plume and using (2.2), we obtain

w2
0(z) =

B

4πν

[
ln

(
z2

a2

)
+ O(1)

]
. (2.10)

The interior structure of the plume does not play a role at leading order.
Introducing ε = B/(2πνw2

0), and using a2 = Q/w0 and (2.8), we obtain

2

ε
+ 1

2
ln ε = lnZ(z), (2.11)

where

Z(z) =
z2

z0(z + z∗)
. (2.12)

Solving (2.11) for ε � 1, and substituting into (2.10) and (2.2), we deduce that

ε(z) ∼ 2

lnZ(z)

(
1 − ln ln Z(z)

2 lnZ(z)

)
, (2.13)

w0(z) ∼
(

B lnZ(z)

4πν

)1/2(
1 +

ln ln Z(z)

4 lnZ(z)

)
, (2.14)

F (z) ∼
(

4πνB

lnZ(z)

)1/2(
1 − ln lnZ(z)

4 lnZ(z)

)
. (2.15)

We note that if z � z∗ then Z ∼ z/z0 and expressions (2.13)–(2.15) reduce to those
for the point-source plume studied in Part 1. If z � z∗ then Z ∼ z2/(z0z

∗); the base
of the plume is where z ∼ a ∼ (z0z

∗)1/2 or, equivalently, Z = O(1).
Given the form of ε(z), it is possible to compute the entire outer velocity field at

leading order. The calculations are essentially the same as in Appendix B of Part 1,
so we omit the details here. The calculation verifies the slender-body result (2.9), and
also provides the plume-induced velocity field in the boundary layer above the source.

2.3. Scaling arguments for the ordering of the length scales

As seen in (2.8) and (2.12), the behaviour of the plume changes over a vertical scale
comparable with the depth z∗ of the virtual origin. It is therefore of interest to know
the size of z∗ relative to both the height h0 of the turn-round region (for the matching
there) and the size R of the source (for determining the flow induced in the boundary
layer).

We are considering Ra � 1 here, and so expect that Nu � 1. The boundary layer
above the source will therefore be thin compared to the size of the source, and so we
expect h0 � R. Since the velocity in the boundary layer will be smaller than that in
the plume (owing to the shallow slope of the isopycnals and to the closer proximity
with the boundary), the boundary layer will thicken more over a radial distance
R than a point-source plume of similar buoyancy would thicken over a height R.
We therefore anticipate that z∗ � R, and hence also z∗ � h0. Order-of-magnitude
matching at the base of the plume shows that both a and z are O(h0), and hence

h2
0 = O(z0z

∗). (2.16)
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In conclusion, we deduce that the various length scales are ordered as follows:

z0 � h0 � R � z∗. (2.17)

In particular, we note that the matching between the plume and the turn-round
region takes place in the lower advection-dominated (z � z∗) part of the plume,
where Q(z) ∼ 4κz∗ and Z(z) ∼ z2/(z0z

∗). These results will be verified by the complete
solution.

3. Solution for a free-slip boundary
We now turn to the specific case of a free-slip boundary, and start with the

assumption (verified below in § 3.4) that the flow in the boundary layer is dominated
by that induced by the plume. The solution strategy is then as follows.

Referring to figure 1(a), the outer flow (region IV) is driven by the plume (III),
and in turn determines the leading-order velocity field in the boundary layer (I).
Solution of an advection–diffusion problem (with the prescribed velocity field due
to the plume) then gives the buoyancy field in the boundary layer. From this we
can compute the mass and buoyancy fluxes entering the turn-round region (II), and
thence the base of the plume. This closes the problem.

3.1. The plume-induced flow in the boundary layer

The plume solution of § 2 allows us to compute the velocity field close to the horizontal
boundary in terms of the buoyancy flux B and the depth z∗ of the virtual origin.
This can be accomplished either by direct asymptotic approximation of an integral
representation (see § 4.1 of Part 1), or by evaluation of the full outer velocity field
from F (z) (see Appendix B of Part 1). Either way, we find that the leading-order
velocity for z � s near the free-slip boundary is given by

u = −u(s) ês +
z

s

∂

∂s
(s u(s))êz, (3.1)

where the radial inflow is given by

u(s) ∼
(

B

4πν lnZ(s)

)1/2 (
1 − ln lnZ(s)

4 lnZ(s)

)
, (3.2)

and the function Z(z) is as defined in (2.12). This represents an almost uniform radial
inflow, with a small vertical velocity to respect mass conservation.

Since h0 � R for Ra � 1, the plug flow (3.1) describes the leading-order velocity
in the thermal boundary layer up to the turn-round region, where s = O(h0) and the
velocity becomes more like a stagnation-point flow.

3.2. The buoyancy field in the boundary layer

To solve the heat equation in the boundary layer above the source, we adopt a
horizontal coordinate, x = R − s, centred on the outer edge of the heated region, as
shown in figure 1(b). Using (3.1) and making the usual boundary-layer approximations,
the heat equation (1.5) becomes

u
∂b

∂x
− z

s

∂ (su)

∂x

∂b

∂z
= κ

∂2b

∂z2
, (3.3)

where the radial inflow u is prescribed by (3.2). This is to be solved in x, z > 0, subject
to the boundary conditions

b = 0 at x = 0 and as z → ∞, b = gβ�T on z = 0. (3.4)
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In fact, as is well-known, it is possible to use a coordinate transformation to find
a similarity solution to (3.3)–(3.4) for an arbitrary inflow u(s). The buoyancy field is
written as a function of a scaled vertical coordinate z/h(x) and, on making this change
of variables, it becomes clear how h(x) should be chosen to obtain self-similarity. A
simple second-order ODE is then solved to find the buoyancy distribution. We obtain

h(x) =
2

su

(
κ

∫ x

0

s2u dx

)1/2

, (3.5)

b(x, z) = gβ�T erfc

(
z

h(x)

)
. (3.6)

We define the horizontal buoyancy flux

Bh(x) = 2πs

∫ ∞

0

u(s) b(x, z) dz, (3.7)

and define a representative horizontal mass flux Qh(x) using (2.4). Substituting from
(3.5) and (3.6), we re-express these integrals as

Bh(x) = 4gβ�T

(
πκ

∫ x

0

s2u dx

)1/2

, (3.8)

Qh(x) =

(
πκ

∫ x

0

s2u dx

)1/2

. (3.9)

Using (3.5) and (3.9), we can also eliminate h(x) from (3.6) to give

b = gβ�T erfc

( √
π ψ

2Qh(x)

)
, (3.10)

where ψ(s, z) = sz u(s) is the leading-order Stokes stream-function.
Equations (3.5)–(3.10) allow us to compute the buoyancy distribution, the boundary-

layer height, and the fluxes from the imposed velocity field (3.2). Note that h(x)
diverges as x → R (equivalently s → 0) owing to the convergent stagnation-point flow
near the axis. When s = O(h) the boundary-layer approximation breaks down, and
the fluid enters the turn-round region.

Although h diverges as x → R, both Bh(x) and Qh(x) tend to finite limits, which
we denote B0 and Q0, respectively. As x → R, the buoyancy distribution b is thus
asymptotically a function only of the stream-function ψ (see figure 2). This shows
that diffusive effects become negligible near the axis, and the flow is advection-
dominated. Corrections from diffusion in the small turn-round region make a
negligible contribution to the total mass and buoyancy fluxes from the source.

Substituting the plume-induced velocity (3.2) into (3.8) and (3.9), we find that the
dominant contribution to the integrals comes from s = O(R). We can therefore
approximate lnZ(s) by ln Z(R) and make only an asymptotically small error.
Evaluating the integrals, we obtain

B0 ∼ κgβ�T R

(
64πR2B

9κ2ν ln Z(R)

)1/4 (
1 − ln lnZ(R)

8 lnZ(R)

)
, (3.11)

Q0 ∼ κR

(
πR2B

36κ2ν lnZ(R)

)1/4 (
1 − ln lnZ(R)

8 lnZ(R)

)
. (3.12)
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Figure 2. Vertical profiles of the buoyancy distribution as the fluid leaves the horizontal
boundary layer and enters the turn-round region. Since the flow is advection-dominated in
the turn-round region, it is natural to base the independent variable on the stream-function.
The scaling is chosen so that η corresponds to the radial coordinate used in the Appendix to
describe the flow in the plume. As the fluid enters the turn-round region, the vertical coordinate
z is proportional to η2 in the free-slip case, and to η in the rigid case.

3.3. Matching the boundary layer to the plume

The boundary layer is matched to the base of the plume via the small turn-round
region near the central stagnation point. This region has a roughly O(1) aspect ratio,
and so a complete solution for the flow there is probably intractable analytically.

Conveniently, since diffusion is negligible in the turn-round region, b = b(ψ)
throughout this region, and hence the function b(ψ) is known at the base of the
plume from the boundary-layer solution of § 3.2. Furthermore, the leading-order
outer flow driven by the plume depends only on B and z∗. These two quantities are
expressible in terms of integrals of b(ψ) corresponding to the buoyancy and mass
fluxes, respectively. Matching through the turn-round region, we require B = B0 and
z∗ = Q0/4κ , where B0 and Q0 are given by (3.11) and (3.12), respectively. We also
note that Z(R) ∼ R2/(z0z

∗) from the ordering of length scales (2.17).
Completing the matching, and rewriting the results in non-dimensional form, we

obtain

Nu ∼
(

64π

3

)1/3

Ra1/3 (lnRa)−1/3

(
1 − 2 ln lnRa

3 lnRa

)
. (3.13)

The next correction to (3.13) is O((ln Ra)−1) relative to the first term, with various
contributions coming from improving approximations made in the analysis.

The length scales associated with the plume are given at leading order by

z∗

R
∼ 1

4

(
π

3

)1/3

Ra1/3 (lnRa)−1/3, (3.14)

z0

R
∼ (293π2)1/6 Ra−2/3 (ln Ra)1/6. (3.15)

The size of the turn-round region scales as

h0

R
= O

(
Ra−1/6(lnRa)α

)
, (3.16)
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where α depends on the precise definition used (e.g. O(1) aspect ratio, or O(1) slope
of streamlines), while the typical height of the boundary layer (away from the outer
edge and the divergence at the axis) scales as

h

R
= O

(
Ra−1/3(ln Ra)1/3

)
∼ Nu−1. (3.17)

Equations (3.14)–(3.16) confirm the ordering z0 � h0 � R � z∗ suggested by the
scaling arguments in § 2.3.

Finally, we note that knowledge of the detailed flow ψ(s, z) in the turn-round region
is not necessary to complete the matching, or to calculate the internal plume structure
at leading order. As shown in the Appendix, the leading-order internal structure can
be determined from b(ψ) at the plume base, which we know from (3.10).

3.4. Checking the velocity in the boundary layer

It remains to check that, within the horizontal boundary layer, the flow up due to the
plume does indeed dominate the flow û driven by the local buoyancy forces. From
(3.2), the magnitude of the horizontal flow driven by the plume satisfies

up ∼
(

B

ν

)1/2

(lnRa)−1/2 ∼ κ

R

(
NuRa

lnRa

)1/2

. (3.18)

The typical slope of the isopycnals in the boundary layer is O(h/R), leading to a
horizontal pressure gradient of O(gβ�T h/R). The locally driven flow is resisted by
a viscous drag (from shearing of the bulk fluid) estimated as O(νû/R) per unit area.
Balancing the driving force with the drag, we obtain

û ∼ κh2

R3
Ra ∼ κ

R

Ra

Nu2
. (3.19)

Combining these results, we find that

û

up

∼ Nu−5/2Ra1/2(ln Ra)1/2 ∼ Ra−1/3(lnRa)1/3 � 1, (3.20)

which confirms the validity of our initial assumption.

4. Solution for a rigid boundary
Adapting the calculations of § 3 to the case of a rigid boundary, we find that

the flow in the boundary layer driven by the local buoyancy forces has a greater
magnitude than that driven by the rising plume: as we shall see below, the buoyancy
flux arising from the locally driven flow scales as Ra1/5, whereas the flux that results
from the plume-driven flow scales as Ra1/5(ln Ra)−1/5.

We therefore consider the horizontal boundary layer above the source in isolation,
and determine the flow field and buoyancy distribution therein by solving the coupled
heat and Stokes equations. From this calculation, we can find the leading-order
buoyancy flux from the source, and hence the desired asymptotic relationship Nu(Ra).
The properties of the plume can subsequently be found by matching the mass and
buoyancy fluxes as in § 3.3. However, for the rigid boundary condition, there is no
feedback from the plume to the boundary layer at leading order.

4.1. The thermal boundary layer

Our solution for the horizontal boundary layer builds upon aspects of a number
of previous studies of flow over a heated surface that use the boundary-layer
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approximation (with inertia) of the Navier–Stokes equations. These studies depend
on the Prandtl number Pr = ν/κ , and our Stokes-flow problem corresponds to the
limit Pr = ∞.

In a two-dimensional planar geometry, there is a self-similar solution for a thermal
boundary layer above a semi-infinite horizontal plate held at a fixed temperature
above that of the ambient fluid (Stewartson 1958; Gill, Weh & del Casal 1965). The
boundary-layer thickness and horizontal velocity increase as x2/5 and x1/5 respectively,
where x is the horizontal distance from the leading edge (see figure 1b). Rotem &
Claassen (1969) considered the asymptotic form of this similarity solution for Pr � 1.
The boundary layer is shown to split into two, and inertia is retained only in the
outer layer.

In an axisymmetric geometry, the extra length scale (distance from the axis)
rules out a similarity solution. For Pr = 1, perturbation expansions and numerical
integration have been considered by Zakerullah & Ackroyd (1979) and Merkin (1983),
respectively.

For the case of infinite Prandtl number considered here, there is a thin thermal
boundary layer (similar to the inner layer of Rotem & Claassen 1969), which drives an
outer Stokes flow with a vertical length scale R. This outer flow is purely passive, and
just responds to the velocity of the thermal boundary layer below it. Since the vertical
scale of the outer flow is much greater than the depth of the boundary layer (as we
shall see, by a factor of Ra1/5), the appropriate boundary condition at the upper edge
of the thermal boundary layer is that the shear stress vanishes, i.e. ∂u/∂z → 0.

Introducing the Stokes stream-function ψ , and employing the usual boundary-layer
approximations, we write (1.3)–(1.5) as

ν

R − x

∂4ψ

∂z4
=

∂b

∂x
, (4.1)

1

R − x

(
∂ψ

∂z

∂b

∂x
− ∂ψ

∂x

∂b

∂z

)
= κ

∂2b

∂z2
. (4.2)

These equations are to be solved subject to

ψ(x, 0) =
∂ψ

∂z
(x, 0) = 0, b(x, 0) = gβ�T ;

∂2ψ

∂z2
(x, ∞) = b(x, ∞) = 0 . (4.3)

In order to capture the singularity at the leading edge (x = 0), we introduce dimen-
sionless variables

ξ̄ =
x

R
, ζ̄ =

z

R

(
x

R

)−2/5

Ra−1/5, (4.4)

and adopt the scalings of the two-dimensional similarity solution

ψ = κR Ra1/5 ξ̄ 3/5 f̄ (ξ̄ , ζ̄ ), (4.5)

b = gβ�T ḡ(ξ̄ , ζ̄ ). (4.6)

(In the similarity solution, f̄ and ḡ are functions only of ζ̄ .) Equations (4.1)–(4.3)
then become

∂4f̄

∂ζ̄ 4
+ (1 − ξ̄ )

(
2
5
ζ̄

∂ ḡ

∂ζ̄
− ξ̄

∂ ḡ

∂ξ̄

)
= 0, (4.7)

(1 − ξ̄ )
∂2ḡ

∂ζ̄ 2
+ 3

5
f̄

∂ ḡ

∂ζ̄
− ξ̄

(
∂ f̄

∂ζ̄

∂ ḡ

∂ξ̄
− ∂ f̄

∂ξ̄

∂ ḡ

∂ζ̄

)
= 0, (4.8)
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Figure 3. Numerical solution to (4.7)–(4.9) for the locally driven thermal boundary layer above
an isothermal heated disk with a rigid boundary condition. The streamlines and isotherms are
displayed at equally spaced intervals of 0.15 and 0.1, respectively.

subject to

f̄ (ξ̄ , 0) =
∂ f̄

∂ζ̄
(ξ̄ , 0) = 0, ḡ(ξ̄ , 0) = 1,

∂2f̄

∂ζ̄ 2
(ξ̄ , ∞) = ḡ(ξ̄ , ∞) = 0. (4.9)

As ξ̄ → 0, f̄ and ḡ can be expanded as series in ξ̄ , thus

f̄ (ξ̄ , ζ̄ ) = f̄ 0(ζ̄ ) + ξ̄ f̄ 1(ζ̄ ) + O(ξ̄ 2), (4.10)

ḡ(ξ̄ , ζ̄ ) = ḡ0(ζ̄ ) + ξ̄ ḡ1(ζ̄ ) + O(ξ̄ 2) . (4.11)

The functions f̄ 0 and ḡ0 are simply given by the two-dimensional similarity solution,
as might be expected for an expansion about the leading edge. The higher-order terms
can be calculated as regular perturbations.

4.2. Numerical solution for the boundary layer

In the absence of an analytic solution, the system (4.7)–(4.9) is solved numerically.
The integration is accomplished by marching forwards in ξ̄ , starting from the profiles
(4.10) and (4.11) at ξ̄ = 0. At each step in ξ̄ , an under-relaxed iterative technique is
employed: finite-difference approximations to (4.8) and (4.7) are used to update ḡ and
f̄ in turn, and this process is repeated until convergence is achieved for that step.

Results from the numerical calculations are shown in figure 3. The behaviour near
ξ̄ = 0 matches the formal series expansion (4.10) and (4.11), while the behaviour
near ξ̄ = 1 is consistent with an asymptotic prediction that the stream-function and
buoyancy distribution should both tend towards functions of ζ̄ [ln(1 − ξ̄ )]−1/4. (The
latter shows the breakdown of the boundary-layer approximations as the turn-round
region is approached.) The final temperature profile as ξ̄ → 1 (i.e. as the fluid enters
the turn-round region) is shown in figure 2 (dashed line).

The total heat flux from the source is computed by integrating the temperature
gradient over the lower boundary:

B0 = −2πκ

∫ R

0

∂b

∂z

∣∣∣∣
z=0

s ds. (4.12)
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Rewriting this expression in terms of the variables (4.4)–(4.6), we obtain

Nu ∼ 2πRa1/5

∫ 1

0

(
−∂ ḡ

∂ζ̄
(ξ̄ , 0)

)
(1 − ξ̄ )

ξ̄ 2/5
dξ̄ . (4.13)

(For numerical ease, the ξ̄−2/5 singularity at the leading edge, which is identical to
that in the two-dimensional case, is subtracted out and computed analytically.) From
the numerical evaluation of (4.13), we obtain

Nu ∼ 2.90 Ra1/5. (4.14)

Similarly, using the definition (2.4), we compute the representative mass flux Q0 from
the limit as ξ̄ → 1, to obtain

Q0 ∼ 0.956 κR Ra1/5. (4.15)

Finally, we note that the size of the turn-round region near the axis is given by

h0

R
= O(Ra−1/5(lnRa)α), (4.16)

where, as in (3.16) for the free-slip case, the exponent α depends on the precise
definition used for the turn-round region.

The results (4.14) and (4.15) are the leading-order asymptotic terms as Ra → ∞
from the boundary-layer solution. There are algebraically small corrections in Ra
from the outer edge (ξ̄ ≈ 0) and central region (ξ̄ ≈ 1) of the boundary layer,
where the boundary-layer approximations break down, and also logarithmically small
corrections from the additional flow driven by the rising plume.

4.3. Matching the boundary layer to the plume

The properties of the plume are determined by matching the buoyancy and mass
fluxes through the turn-round region, as in § 3.3. The fluxes from the boundary-layer
are given by (4.14) and (4.15). The buoyancy flux B in the plume is simply the flux
B0 emitted by the source, and the Nusselt number is given by (4.14). Matching (4.15)
with Q(0) = 4κz∗, we find that

z∗

R
∼ 0.239 Ra1/5, (4.17)

and, using the definition (1.2) of z0, we obtain

z0

R
∼ 5.89 Ra−3/5. (4.18)

We note that the scalings (4.16)–(4.18) are again consistent with the ordering of length
scales anticipated in § 2.3.

Finally, we check the consistency of neglecting the effects of the plume on the
boundary layer and vice versa. Away from the plume and the lower boundary, the
outer flow up driven by the plume scales as (B/ν)1/2 [ln Z(r)]−1/2 (see equations (B 20)
and (B 17) of Part 1, together with (2.15)). However, the effect of the no-slip boundary
condition is to reduce the velocity scale by a factor of z/s for z � s. Therefore, within
the boundary layer, the typical vertical shear in the radial flow driven by the plume
scales like

γp ∼ κ

R2

(
NuRa

lnRa

)1/2

. (4.19)
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Figure 4. The variation of Nu with Ra for free-slip and rigid boundary conditions. The
leading-order asymptotic expressions (3.13) and (4.14) are shown by the solid lines. An
impression of the magnitude of the logarithmic correction terms is provided by omitting
the ln(ln Ra) term from (3.13) (dashed) and by numerical solution of the boundary-layer
equation (4.2) with the plume-induced velocity added to the locally driven flow (circles). The
differences from (3.13) and (4.14) are about 13% and 10 %, respectively, at Ra = 106.

Balancing the viscous shear with the pressure gradient, we find (consistent with the
scalings of § 4.1) that the locally driven shear in the boundary layer scales as

γ̄ ∼ κh2

R4
Ra ∼ κ

R2

Ra

Nu2
. (4.20)

We combine these results to obtain

γ̄

γp

∼ Nu−5/2Ra1/2(ln Ra)1/2 ∼ (ln Ra)1/2 � 1, (4.21)

showing that it is indeed appropriate to neglect the effects of the plume when
considering the boundary layer at leading order.

Since h/R ∼ Nu−1 is algebraically small in Ra , it can also be seen that, sufficiently
far outside the boundary layer, the plume-driven flow up dominates the flow ū ∼ γ̄ h

induced by the drag of the boundary layer. It is therefore appropriate to ignore the
effects of the boundary-layer flow when employing the plume model of § 2.

5. Discussion and concluding remarks
5.1. Summary

In this paper we have presented analysis of the asymptotic structure of the
axisymmetric plume above a circular heated region in a planar horizontal boundary
at large Rayleigh number, for the cases of both a free-slip and a rigid boundary. The
main results are (3.13) and (4.14) which give the relationship Nu(Ra) as Ra → ∞. In
both cases there are logarithmic corrections (see figure 4). The heat flux in the plume
is determined by the heat transferred into the radially inflowing horizontal boundary
layer above the source. The nature of this boundary layer differs between the two
boundary conditions: with a free-slip boundary, the flow in the layer is dominated by
that driven by the rising plume; with a rigid boundary, the flow is dominated by that
driven by the buoyancy in the layer itself.

Comparing (3.18)–(3.20) for free-slip case with (4.19)–(4.21) for the rigid case, we see
that the difference in driving mechanism is associated with the different dependence
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of Nu(Ra). The rigid boundary condition reduces both the plume-driven and locally
driven velocities by a factor of h/R. However, the slower velocities with the rigid
condition lead to a thicker boundary layer and a correspondingly smaller Nusselt
number. This makes the plume-induced velocity smaller, and the locally driven velocity
larger. This effect is sufficient to change the dominant velocity in the boundary layer
between the two boundary conditions.

The structure of the plume solutions presented here can be contrasted with previous
work in a number of ways, which we group under two headings. Finally, we discuss
the applicability of this work to experiments and plumes in the Earth’s mantle.

5.2. Plume structure above point and distributed sources

For a point-source plume (studied in Part 1) there is a single vertical length scale z0.
In z � z0 there is a local diffusion-dominated solution in the neighbourhood of the
source; in z � z0 there is a slender plume in which nearly vertical advection balances
radial diffusion.

For a distributed source there are several distinct regions to the plume, disti-
nguishable by the vertical length scales h0 = (z0z

∗)1/2 and z∗. The turn-round region
occupies z � h0, where we cannot say much about the velocity field, though we do
know the function b(ψ). As z increases above h0, the effective aspect ratio ε(z) of
the plume becomes small, and the leading-order vertical velocity is then horizontally
uniform. Conservation of buoyancy flux then enables us to compute the leading-order
outer flow without requiring knowledge of the internal buoyancy distribution.

For h0 � z � z∗, the plume is much wider at a given height than a plume of
equal buoyancy flux from a point source would be. As a result, advection dominates
diffusion, and the temperature distribution follows the streamlines at leading order.
Over this range of heights, the plume radius and the centreline temperature remain
approximately constant, with logarithmically small variations in the radius owing to
the variation of the rise velocity. The small corrections due to diffusion are analysed
in the Appendix, where it is also shown how to calculate the first-order correction to
the rise velocity.

When z = O(z∗), the plume radius is comparable to that of the corresponding
point-source solution, and diffusive effects start to become significant. For z � z∗,
the eigenmode description in Appendix A of Part 1 is again appropriate, and radial
diffusion balances vertical advection. For z � z∗, the zeroth eigenmode dominates so
that the temperature profile is Gaussian, and the plume is then described well by the
point-source solution. We note that z∗ � R, where R is the length scale of the source.

5.3. Comparison with a planar plume and an axisymmetric convection cell

Table 1 provides a comparison of key scalings from the present study of an
axisymmetric unbounded plume with the corresponding scalings for the analogous
two-dimensional plume (Roberts 1977) and for the central plume of an axisymmetric
convection cell with free-slip boundary conditions (Umemura & Busse 1989). Various
similarities and differences are worth noting.

The most striking difference between the problems is in the z-dependence of the
rise velocity w0, which increases as z1/2 in a planar geometry and logarithmically in an
axisymmetric geometry. This can be attributed to the different responses of the outer
Stokes flow to vertical sheet and line forces, respectively: in a planar geometry the
vertical sheet force B/w0 (per unit width in the third dimension) due to the plume’s
buoyancy is supported by shear stresses proportional to w0/z in the outer flow on
either side; in an axisymmetric geometry the vertical line force B/w0 is supported
by shear stresses proportional to w0/s acting over a circular contour of length 2πs.
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Two-dimensional
planar plume

Axisymmetric
plume

Axisymmetric
convection cell

(Roberts 1977) (present work) (Umemura & Busse 1989)

Nuf-slip 1.42 Ra1/3 4.06

(
Ra

ln Ra

)1/3

f (λ) Ra1/3

Nurigid c Ra1/5 2.90 Ra1/5 –
w0R

κ

(
R1

z

R

)1/2

[R1ln(z/a)]1/2 [R1ln(z/a)]1/2

z∗

R
NuRa−1/3 Nu n/a

a

R
[z � z∗]

(
1

R2

R

z

)1/2
1[

R2 ln(R2z4/R4)
]1/4

1

(R2 ln R2)
1/4

a

R
[z � z∗]

(
1

R1

z

R

)1/4
(z/R)1/2[

R1 ln(R1z2/R2)
]1/4

n/a

Table 1. Comparison of key leading-order scalings with those from related work, where
R1 = RaNu and R2 = Ra/Nu . In the Nusselt-number scalings for free-slip and rigid conditions,
the function f (λ) describes the dependence on the cell’s aspect ratio λ, and the constant
c ≈ 1.993 was given incorrectly by Roberts (1977) as 1.948, owing to neglect of the locally
driven boundary-layer flow. The rise velocity w0, height z∗ at which diffusion becomes important
in the plume, and plume radius a depend only on the free-slip and rigid boundary conditions via
the buoyancy flux as expressed in the Nusselt number. Note that many of the results shown
have logarithmic correction terms which may not be much smaller for realistic parameter
values; see, for example, (3.13) and figure 4.

The factor (RaNu)1/2 reflects the dependence w0 ∝ B1/2 in each case. The logarithmic
divergence of the axisymmetric outer flow as s → 0 introduces an additional weak
dependence and coupling to the plume width a that is absent on the simple planar
problem.

The difference between the planar and axisymmetric results for the z-dependence
of the plume width a in both the advection-dominated (z � z∗) and diffusive (z � z∗)
regions is a direct consequence of the different variation of the rise velocity together
with conservation of buoyancy flux.

We observe that the rise velocity of an unbounded axisymmetric plume scales the
same way as that of the central plume in an axisymmetric convection cell since
both reflect the response to a buoyant line force. This produces a corresponding
similarity between the plume width in the lower advection-dominated region (z � z∗)
of the unbounded plume and that in the convection cell. The additional logarithmic
dependence on z4/R4 for the plume reflects the need to consider heights z/R � z∗/R ∼
Nu � 1; the convection cell is considered to have a height comparable to R, so that
z/R = O(1) and there is no space to observe significant dependence on z.

The Nusselt number scalings in the three problems involve the same algebraic
powers of the Rayleigh number (1/3 or 1/5, depending on the boundary condition).
This similarity masks differences in the way the flow in the horizontal boundary
layer is driven (which determines the heat transfer) and is thus perhaps a little more
surprising than it first appears. The boundary-layer flow for planar and axisymmetric
plumes above a free-slip boundary is dominated in both cases by the flow induced by
the plume; the logarithmic factor for the axisymmetric plume reflects the fact that the
outer flow is logarithmically smaller than the plume velocity in a cylindrical geometry.



394 R. J. Whittaker and J. R. Lister

The absence of this factor for the axisymmetric convection cell despite the cylindrical
geometry is because the boundary-layer flow is then driven by the encircling sheet-like
descending plume, which has an essentially two-dimensional character, instead of by
the rising central plume. The absence of a logarithmic factor for an axisymmetric
plume above a rigid boundary, reflects the fact that the boundary-layer flow is driven
locally in this case instead of by the plume.

Roberts (1977) assumed that the boundary-layer flow for a planar plume above
a rigid boundary is dominated by the plume. In fact, the flow driven by the local
buoyancy and that induced by the plume have the same order of magnitude and must
therefore be considered together. We solved this coupled problem by modifying the
method of § 4 to include a guessed plume-driven velocity component, and iterating to
find consistency between the guessed plume flux B and the calculated boundary-layer
flux B0. Numerically, we find that c = 1.993, instead of the previously reported value
of 1.948. The additional locally driven flow has a surprisingly small effect on the
overall rate of heat transfer.

5.4. Inertia and boundaries in the Earth’s mantle and experiments

There is an analogous condition to that given in § 6.3 of Part 1 for inertial effects to
play a role in the far field. If inertia does not re-enter until r � R, then this requires

Pr � (RaNu)1/2 [log(Ra/Nu)]−1/2 . (5.1)

In the Earth’s mantle, with Prandtl numbers of order 1020 or more, and Rayleigh
numbers at most O(108), this condition is certainly satisfied. Indeed, the finite vertical
extent of the mantle will have a far greater effect on the flow than finite inertia.

For experiments intended to verify the asymptotic predictions, the condition (5.1)
presents more of an issue. Ensuring that inertial effects are negligible at sufficiently
large Rayleigh numbers for the leading-order asymptotic results to be reasonable
approximations (or to be comparable with conditions in the mantle) restricts the choice
of working fluids considerably. Nevertheless, it is the finite size of the experimental
tank that is likely to be the most challenging constraint. Since the velocity outside the
plume decays only logarithmically, any side boundaries are likely to have an effect on
the solution proportional to an inverse logarithm of their distance from the plume.
Experiments in confined regions might be better compared with theoretical analyses
of convection cells, such as an adaptation of Umemura & Busse (1989) to use rigid
boundary conditions.

Appendix. Expansion for the internal plume structure
To examine the internal structure of the plume, we employ a similar transformation

to that in § 3 of Part 1, but use the fixed length z∗ to replace some of the occurrences
of the height z. Thus we write

η = s

(
w0(z)

4κz∗

)1/2

, ζ =
z

z∗ , (A 1)

ψ = 4κz∗ f (η, ζ ), b =
B

2π

g(η, ζ )

4κz∗ . (A 2)

The governing equations (1.3) and (1.5), and the buoyancy-conservation equation (2.1)
become (

1

η

∂

∂η
η

∂

∂η

)
1

η

∂f

∂η
= −εg, (A 3)
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1

η

(
∂f

∂η

∂g

∂ζ
− ∂f

∂ζ

∂g

∂η

)
=

1

η

∂

∂η

(
η
∂g

∂η

)
, (A 4)

∫ ∞

0

∂f

∂η
g dη = 1, (A 5)

where ε = B/(2πνw2
0) � 1 as before. The boundary conditions are that w and b

are regular at η = 0, that b → 0 as η → ∞, that w = w0(z) at leading order, and
that b and w match the initial profiles prescribed by the flow out of the turn-round
region. For z � h0, we apply these initial profiles at z = 0. It is then natural to pose
a solution of the form

f (η, ζ ) = f0(η, ζ ) + εf1(η, ζ ) + · · · , (A 6)

g(η, ζ ) = g0(η, ζ ) + εg1(η, ζ ) + · · · . (A 7)

A.1. Leading-order solution

The leading-order component of (A 3) is(
1

η

∂

∂η
η

∂

∂η

)
1

η

∂f0

∂η
= 0. (A 8)

which has solution

f0(η, ζ ) = 1
2
η2, (A 9)

where the normalization is chosen so that the corresponding vertical velocity is
precisely w0(z). The leading-order component of (A 5) becomes∫ ∞

0

g0 η dη = 1, (A 10)

which provides a normalization for the buoyancy distribution.
At leading order, the heat equation (A 4) is simply

∂g0

∂ζ
=

1

4η

∂

∂η

(
η
∂g0

∂η

)
, (A 11)

reflecting lateral diffusion and advection by the leading-order uniform flow. Identifying
ζ with a time-like variable, (A 11) is simply the two-dimensional axisymmetric
diffusion equation with a diffusion coefficient of 1/4.

Given the initial temperature profile at the base of the plume, we can solve
(A 11) using the Green’s function for an initial circular ring of heat (see, for example,
Carslaw & Jaeger 1959, § 10.3). We obtain

g0(η, ζ ) =
2

ζ

∫ ∞

0

exp

(
−η2 + η′2

ζ

)
I0

(
2ηη′

ζ

)
G0(η

′) η′ dη′, (A 12)

where the initial dimensionless temperature profile G0(η) = g0(η, 0) is given by

G0(η) =
2π 4κz∗

B
b(2κz∗η2) =

b(2κz∗η2)∫ ∞

0

b(2κz∗η2) η dη

(A 13)

and b(ψ) describes the buoyancy distribution through the turn-round region (see
figure 2). Using (A 12), we can confirm that the asymptotic series of Appendix A of
Part 1 also describes the relaxation towards a Gaussian above a distributed source
for z � z∗. We can also use (A 12) to verify equation (2.8) for Q(z).
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A.2. First-order corrections

The first-order correction to the Stokes equation is given by(
1

η

∂

∂η
η

∂

∂η

)
1

η

∂f1

∂η
= −g0. (A 14)

The solution may be written as

1

η

∂f1

∂η
= Ā(ζ ) −

∫ η

1

1

η

(∫ η

0

g0η dη

)
dη, (A 15)

where the function Ā(ζ ) is determined by matching with the outer flow (at a higher
order than simple slender-body theory). For η � 1, we obtain the behaviour

w

w0

∼ 1 − ε ln η − ε

[
Ā +

∫ ∞

1

1

η

(∫ ∞

η

g0η dη

)
dη

]
. (A 16)

This is the outer limit of the inner vertical velocity, which must be matched with
the inner limit of the outer flow. It is easily seen that the first two terms in (A 16)
do indeed match the slender-body estimate (2.9) for the outer velocity and, as for
a point source, these leading-order terms are independent of the detailed buoyancy
distribution within the plume.

The first correction to the slender-body theory (see § 4.3 of Part 1) yields the
following result for the inner limit of the outer velocity:

w

w0

∼ F (z)

2πνw0(z)

(
− ln

(
s

z

)
+ (ln 2 − δ) + · · ·

)
, (A 17)

where δ = 1/2 for a free-slip boundary and 1 for a rigid boundary.
To complete the matching at O(ε), and hence determine Ā, it is necessary to know

the O(ε) correction to F (z). From equation (4.7) of Part 1, this correction may be
expressed in terms of an integral of g0 f ′

1, where f ′
1 is given by (A 15) and g0 is given

by (A 12). Given the initial profile G0 from the boundary-layer solution, it is therefore
possible to evaluate, at least numerically, the O(ε) correction to the vertical velocity
in the plume.

REFERENCES

Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids , 2nd edn. Oxford University
Press.

Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory.
J. Fluid Mech. 44, 791–810.

Gill, W. N., Weh, D. W. & del Casal, E. 1965 Free convection on a horizontal plate. Z. Angew.
Math. Phys. 16, 539–541.

Kaminski, E. & Jaupart, C. 2003 Laminar starting plumes in high-Prandtl-number fluids. J. Fluid
Mech. 478, 287–298.

Kerr, R. C. & Mériaux, C. 2004 Structure and dynamics of sheared mantle plumes. Geochem.
Geophys. Geosyst. 5 (12).

Leal, L. G. 1992 Laminar Flow and Convective Transport Processes . Butterworth–Heinemann.

Merkin, J. H. 1983 Free convection above a heated horizontal disk. Z. Angew. Math. Phys. 34,
596–608.

Olson, P., Schubert, G. & Anderson, C. 1993 Structure of axisymmetric mantle plumes. J. Geophys.
Res. 98 (B4), 6829–6844.

Roberts, G. O. 1977 Fast viscous convection. Geophys. Astrophys. Fluid Dyn. 8, 197–233.



Axisymmetric creeping plumes. Part 2 397

Rotem, Z. & Claassen, L. 1969 Natural convection above unconfined horizontal surfaces. J. Fluid
Mech. 39, 173–192.

Stewartson, K. 1958 On the free convection from a horizontal plate. Z. Angew. Math. Phys. 9a,
276–281.

Umemura, A. & Busse, F. H. 1989 Axisymmetric convection at large Rayleigh and infinite Prandtl
number. J. Fluid Mech. 208, 459–478.

Whittaker, R. J. & Lister, J. R. 2006 Steady axisymmetric creeping plumes above a planar
boundary. Part 1. A point source. J. Fluid Mech. 567, 361–378.

Zakerullah, M. & Ackroyd, J. A. D. 1979 Laminar natural convection boundary layers on
horizontal disks. Z. Angew. Math. Phys. 30, 427–435.




